Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants.

Identifieur interne : 003225 ( Main/Exploration ); précédent : 003224; suivant : 003226

Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants.

Auteurs : Guangshu Zhai [États-Unis] ; Hans-Joachim Lehmler ; Jerald L. Schnoor

Source :

RBID : pubmed:20402517

Descripteurs français

English descriptors

Abstract

4-Monochlorobiphenyl (CB3), mainly an airborne pollutant, undergoes rapid biotransformation to produce hydroxylated metabolites (OH-CB3s). However, up to now, hydroxylation of CB3 has not been studied in living organisms. In order to explore the formation of hydroxylated metabolites of CB3 in whole plants, poplars (Populus deltoides x nigra, DN34) were exposed to CB3 for 10 days. Poplars are a model plant with complete genomic sequence, and they are widely used in phytoremediation. Results showed poplar plants can metabolize CB3 into OH-CB3s. Three monohydroxy metabolites, including 2'-hydroxy-4-chlorobiphenyl (2'OH-CB3), 3'-hydroxy-4-chlorobiphenyl (3'OH-CB3), and 4'-hydroxy-4-chlorobiphenyl (4'OH-CB3), were identified in hydroponic solution and in different parts of the poplar plant. The metabolite 4'OH-CB3 was the major product. In addition, there were two other unknown monohydroxy metabolites of CB3 found in whole poplar plants. Based on their physical and chemical properties, they are likely to be 2-hydroxy-4-chlorobiphenyl (2OH-CB3) and 3-hydroxy-4-chlorobiphenyl (3OH-CB3). Compared to the roots and leaves, the middle portion of the plant (the middle wood and bark) had higher concentrations of 2'OH-CB3, 3'OH-CB3, and 4'OH-CB3, which suggests that these hydroxylated metabolites of CB3 are easily translocated in poplars from roots to shoots. The total masses of 2'OH-CB3, 3'OH-CB3, and 4'OH-CB3 in whole poplar plants were much higher than those in solution, strongly suggesting that it is mainly the poplar plant itself which metabolizes CB3 to OH-CB3s. Finally, the data suggest that the metabolic pathway be via epoxide intermediates.

DOI: 10.1021/es100230m
PubMed: 20402517
PubMed Central: PMC2891041


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants.</title>
<author>
<name sortKey="Zhai, Guangshu" sort="Zhai, Guangshu" uniqKey="Zhai G" first="Guangshu" last="Zhai">Guangshu Zhai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, USA. zhai-guangshu@uiowa.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242</wicri:regionArea>
<orgName type="university">Université de l'Iowa</orgName>
<placeName>
<settlement type="city">Iowa City</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lehmler, Hans Joachim" sort="Lehmler, Hans Joachim" uniqKey="Lehmler H" first="Hans-Joachim" last="Lehmler">Hans-Joachim Lehmler</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20402517</idno>
<idno type="pmid">20402517</idno>
<idno type="doi">10.1021/es100230m</idno>
<idno type="pmc">PMC2891041</idno>
<idno type="wicri:Area/Main/Corpus">003213</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003213</idno>
<idno type="wicri:Area/Main/Curation">003213</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003213</idno>
<idno type="wicri:Area/Main/Exploration">003213</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants.</title>
<author>
<name sortKey="Zhai, Guangshu" sort="Zhai, Guangshu" uniqKey="Zhai G" first="Guangshu" last="Zhai">Guangshu Zhai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, USA. zhai-guangshu@uiowa.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242</wicri:regionArea>
<orgName type="university">Université de l'Iowa</orgName>
<placeName>
<settlement type="city">Iowa City</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lehmler, Hans Joachim" sort="Lehmler, Hans Joachim" uniqKey="Lehmler H" first="Hans-Joachim" last="Lehmler">Hans-Joachim Lehmler</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biphenyl Compounds (chemistry)</term>
<term>Hydroxylation (MeSH)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dérivés du biphényle (composition chimique)</term>
<term>Hydroxylation (MeSH)</term>
<term>Populus (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Biphenyl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Dérivés du biphényle</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hydroxylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Hydroxylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">4-Monochlorobiphenyl (CB3), mainly an airborne pollutant, undergoes rapid biotransformation to produce hydroxylated metabolites (OH-CB3s). However, up to now, hydroxylation of CB3 has not been studied in living organisms. In order to explore the formation of hydroxylated metabolites of CB3 in whole plants, poplars (Populus deltoides x nigra, DN34) were exposed to CB3 for 10 days. Poplars are a model plant with complete genomic sequence, and they are widely used in phytoremediation. Results showed poplar plants can metabolize CB3 into OH-CB3s. Three monohydroxy metabolites, including 2'-hydroxy-4-chlorobiphenyl (2'OH-CB3), 3'-hydroxy-4-chlorobiphenyl (3'OH-CB3), and 4'-hydroxy-4-chlorobiphenyl (4'OH-CB3), were identified in hydroponic solution and in different parts of the poplar plant. The metabolite 4'OH-CB3 was the major product. In addition, there were two other unknown monohydroxy metabolites of CB3 found in whole poplar plants. Based on their physical and chemical properties, they are likely to be 2-hydroxy-4-chlorobiphenyl (2OH-CB3) and 3-hydroxy-4-chlorobiphenyl (3OH-CB3). Compared to the roots and leaves, the middle portion of the plant (the middle wood and bark) had higher concentrations of 2'OH-CB3, 3'OH-CB3, and 4'OH-CB3, which suggests that these hydroxylated metabolites of CB3 are easily translocated in poplars from roots to shoots. The total masses of 2'OH-CB3, 3'OH-CB3, and 4'OH-CB3 in whole poplar plants were much higher than those in solution, strongly suggesting that it is mainly the poplar plant itself which metabolizes CB3 to OH-CB3s. Finally, the data suggest that the metabolic pathway be via epoxide intermediates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20402517</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0013-936X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>44</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants.</ArticleTitle>
<Pagination>
<MedlinePgn>3901-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/es100230m</ELocationID>
<Abstract>
<AbstractText>4-Monochlorobiphenyl (CB3), mainly an airborne pollutant, undergoes rapid biotransformation to produce hydroxylated metabolites (OH-CB3s). However, up to now, hydroxylation of CB3 has not been studied in living organisms. In order to explore the formation of hydroxylated metabolites of CB3 in whole plants, poplars (Populus deltoides x nigra, DN34) were exposed to CB3 for 10 days. Poplars are a model plant with complete genomic sequence, and they are widely used in phytoremediation. Results showed poplar plants can metabolize CB3 into OH-CB3s. Three monohydroxy metabolites, including 2'-hydroxy-4-chlorobiphenyl (2'OH-CB3), 3'-hydroxy-4-chlorobiphenyl (3'OH-CB3), and 4'-hydroxy-4-chlorobiphenyl (4'OH-CB3), were identified in hydroponic solution and in different parts of the poplar plant. The metabolite 4'OH-CB3 was the major product. In addition, there were two other unknown monohydroxy metabolites of CB3 found in whole poplar plants. Based on their physical and chemical properties, they are likely to be 2-hydroxy-4-chlorobiphenyl (2OH-CB3) and 3-hydroxy-4-chlorobiphenyl (3OH-CB3). Compared to the roots and leaves, the middle portion of the plant (the middle wood and bark) had higher concentrations of 2'OH-CB3, 3'OH-CB3, and 4'OH-CB3, which suggests that these hydroxylated metabolites of CB3 are easily translocated in poplars from roots to shoots. The total masses of 2'OH-CB3, 3'OH-CB3, and 4'OH-CB3 in whole poplar plants were much higher than those in solution, strongly suggesting that it is mainly the poplar plant itself which metabolizes CB3 to OH-CB3s. Finally, the data suggest that the metabolic pathway be via epoxide intermediates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhai</LastName>
<ForeName>Guangshu</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, USA. zhai-guangshu@uiowa.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lehmler</LastName>
<ForeName>Hans-Joachim</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnoor</LastName>
<ForeName>Jerald L</ForeName>
<Initials>JL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P42 ES013661</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P42 ES013661-040005</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P42ES013661</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001713">Biphenyl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>QA22Z3NGLU</RegistryNumber>
<NameOfSubstance UI="C006983">4-chlorobiphenyl</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001713" MajorTopicYN="N">Biphenyl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006900" MajorTopicYN="N">Hydroxylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20402517</ArticleId>
<ArticleId IdType="doi">10.1021/es100230m</ArticleId>
<ArticleId IdType="pmc">PMC2891041</ArticleId>
<ArticleId IdType="mid">NIHMS197853</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 1995 Jan;177(1):20-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8002618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 1989 Nov;19(11):1307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2515663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Experientia. 1977 Sep 15;33(9):1134-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">891850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1996 Jan-Feb;9(1):158-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8924585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2001 Dec;45(8):1119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11695625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1979 Nov 28;91(2):475-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">42397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Pharmacol. 2008 Mar;25(2):260-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18438460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2006 Feb 25;159(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2004 Sep 20;331(1-3):125-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15325145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 Feb;74(7):950-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2009 Oct 1;43(19):7503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19848168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2003 Mar;21(3):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 Nov;73(10):1608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18793792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 1994;24(2):87-149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8037844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1974 Aug 16;185(4151):573-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4841570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2006 Aug 1;40(15):4633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2006 Jun 15;78(2):176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2008 Jul;21(7):1359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18549251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 May;65(5):2217-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10224022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2007 Jan;115(1):20-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17366814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Nov 15;36(22):4735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12487293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2007 Oct;69(8):1221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17640705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1974 Dec 20;252(5485):698-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4215979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2004 Mar;17(3):340-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15025504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Aug 1;42(15):5746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1995 Jan-Feb;8(1):92-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7703372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Reprod Toxicol. 2005 May-Jun;20(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15808786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Mar 10;317(2):464-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7893164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jan 1;409(1):59-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2004 Aug;112(11):1208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Monit. 2004 Sep;6(9):758-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15346180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Iowa City</li>
</settlement>
<orgName>
<li>Université de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Lehmler, Hans Joachim" sort="Lehmler, Hans Joachim" uniqKey="Lehmler H" first="Hans-Joachim" last="Lehmler">Hans-Joachim Lehmler</name>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Zhai, Guangshu" sort="Zhai, Guangshu" uniqKey="Zhai G" first="Guangshu" last="Zhai">Guangshu Zhai</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20402517
   |texte=   Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20402517" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020